
Distributed ApplicationsDistributed Applications
with CORBAwith CORBA

Frank Kargl
Chaos Computer Club, Ulm,
Germany
frank.kargl@ulm.ccc.de

March 10, 2006 Frank Kargl, CCC Ulm 2

Future NetworksFuture Networks

March 10, 2006 Frank Kargl, CCC Ulm 3

The ProblemThe Problem

Application Integration and Distributed Processing
are the same thing
Constructing information-sharing distributed
systems from diverse sources:

heterogeneous,
networked,
physically disparate,
multi-vendor.

March 10, 2006 Frank Kargl, CCC Ulm 4

Existing Tools?Existing Tools?

A major problem stands in the way:
Existing tools (Sockets, DCE, ONC) are too low-
level; don’t offer a unified view of all distributed
applications.
Complexity of Distributed Systems
grows beyond any boundaries.
Implementation and
Management Overkill

March 10, 2006 Frank Kargl, CCC Ulm 5

Object Management GroupObject Management Group

Not-for-profit company based in United States, with
representation in United Kingdom, Japan &
Germany.
Founded April 1989.
Small staff (15 full time); no internal development.
Dedicated to creating and popularizing object-
oriented standards for application integration based
on existing technology.
Object World subsidiary for market studies, training,
seminars and conferences.

March 10, 2006 Frank Kargl, CCC Ulm 6

Technical CommitteeTechnical Committee

Representatives of all member companies.
Determines direction of architecture &
standards.
Meets every eight weeks,
hosted internationally.

March 10, 2006 Frank Kargl, CCC Ulm 7

Discussions continue between
meetings by electronic mail

Discussions continue between
meetings by electronic mail

Electronic MeetingsElectronic Meetings

March 10, 2006 Frank Kargl, CCC Ulm 8

Adoption ProcessAdoption Process

RFI (Request for Information) to establish range of
commercially available software.
RFP (Request for Proposals) to gather explicit
descriptions of available software.
Letters of Intent to establish corporate direction.
Task Force and End User evaluation &
recommendation; simultaneous Business Committee
examination.
Board decision based on TC, End User, and BC
recommendations.

March 10, 2006 Frank Kargl, CCC Ulm 9

Domain Task ForcesDomain Task Forces

Manufacturing:
Engineering Resource Planning (ERP), Product Data Management (PDM);

Finance
Currency Standard, Party Management,Compass Project for Accounting

Telecommunications
TMN/CORBA interworking, CORBA for IN, Audio/Video Streams

Electronic Commerce
Electronic Payments, Negotiations

Healthcare (CORBAmed)
Patient Identification Number (PID), Lexicon Query System, Life Sciences,…

Transportation
air Traffic control,
inter-nodal transport.

March 10, 2006 Frank Kargl, CCC Ulm 10

Other DirectionsOther Directions

End-user SIG.
Object-oriented analysis & design SIG
Object-oriented database interface standards SIG
Business Object Management SIG
Manufacturing SIG
Healthcare SIG
Telecommunications SIG
Financial SIG
Security SIG

March 10, 2006 Frank Kargl, CCC Ulm 11

An Open ProcessAn Open Process

OMG is an open, member-supported process, and
share their work with other organizations doing
related work:

X/Open
OSF, X Consortium, W3C
ESPRIT, NIST, NII
ISO, ITU
National bodies: ANSI, IEEE, JIPS
CFI, ODMG, COS, NMF, IMA, POSC

March 10, 2006 Frank Kargl, CCC Ulm 12

A Common FoundationA Common Foundation

Enable interoperability and Portability based
on an object-oriented foundation which
specifies:

A single terminology for object-orientation.
A common abstract framework or object model.
A common reference model or architecture.
Common interfaces & protocols.

Foundation: Model published in OMA Guide

March 10, 2006 Frank Kargl, CCC Ulm 13

Object ModelObject Model

Stated Goal is "to define an object model that
facilitates Portability of applications and type
libraries, and Interoperability of software
components in a distributed environment."

The model was completed in 1992 and published
in the updated OMA Guide.
Key concepts are core, components, and profiles.

March 10, 2006 Frank Kargl, CCC Ulm 14

Application Objects CORBA Facilities

CORBA Services

Lifecycle
Events
Naming
Persistence
Transactions
Concurrency

Externalization
Security
Time
Properties
Query
Licensing

Compound Docs
Object Linking
Help Facilities
User Interface
Desktop Mgmt
Vertical Markets

Not standardized
by OMG;
Scope is single
application or
vendor

OMA OverviewOMA Overview

Object Request Broker

March 10, 2006 Frank Kargl, CCC Ulm 15

Fundamental CORBA Design Principles Fundamental CORBA Design Principles

Separation of interface and implementation
Clients depend on interfaces, not implementation

Location transparency
Service use is orthogonal to service location

Access transparency
Invoke operations on objects

Typed interfaces
Object references are typed by interfaces

Support of multiple inheritance of interfaces
Inheritance extends or specializes behavior

March 10, 2006 Frank Kargl, CCC Ulm 16

Fundamental CORBA Design PrinciplesFundamental CORBA Design Principles

CORBA supports reliable, uni-cast
communication

oneway, twoway, deferred synchronous
CORBA objects can also collaborate in a
client/server, peer-to-peer or
publish/subscriber manner

e.g. COS Event Service defines a
publish/subscribe communication paradigm

March 10, 2006 Frank Kargl, CCC Ulm 17

CORBA AdvantagesCORBA Advantages

Simplifies application interworking
higher level integration than traditional untyped
bytestreams

Benefits for distributed programming similar
to OO languages for non-distributed
programming

encapsulation, interface inheritance,
polymorphism and exception handling

March 10, 2006 Frank Kargl, CCC Ulm 18

CORBA ArchitectureCORBA Architecture

ORB

Client

Server

ORB: Object Request Broker

March 10, 2006 Frank Kargl, CCC Ulm 19

Client

Server

CORBA ArchitectureCORBA Architecture

ORB

CO

SO SO

ORB: Object Request Broker
CO: Client Object
SO: Server Object

March 10, 2006 Frank Kargl, CCC Ulm 20

Client

Server

CORBA ArchitectureCORBA Architecture

ORB

ORB: Object Request Broker
CO: Client Object
SO: Server Object
Stub: Client Stub
Skel: Server Skeleton

Stub

CO

SO SO

Skel

March 10, 2006 Frank Kargl, CCC Ulm 21

Client

Server

CORBA ArchitectureCORBA Architecture

ORB

ORB: Object Request Broker
CO: Client Object
SO: Server Object
Stub: Client Stub
Skel: Server Skeleton

Stub

CO

SO SO

SkelCommon
Services &
Facilities

March 10, 2006 Frank Kargl, CCC Ulm 22

Interface Definition LanguageInterface Definition Language

IDL separates the Interface from the Implementation
Benefits of using an IDL

Ensure platform independence (e.g. NT, Unix)
Enforce modularity
Increase robustness
Enable language independence

Many IDLs available
ASN.1, DCE IDL, ONC XDR, CORBA IDL

March 10, 2006 Frank Kargl, CCC Ulm 23

CORBA IDLCORBA IDL

Object-oriented, strongly typed, public interface
specification language
Independent of any particular language/compiler
Mappings will be provided for many
languages/compilers

C, C++, Smalltalk, COBOL, Modula3, DCE, Java, ...

Not a programming language
similar to Java Interface / C++ abstract classes

March 10, 2006 Frank Kargl, CCC Ulm 24

CORBA IDL ElementsCORBA IDL Elements

modules and interfaces
Operations and Attributes
Single and multiple inheritance
Basic types (double, long, char, etc.)
any type
Arrays and sequence
struct, enum, union, typedef
consts
exceptions

March 10, 2006 Frank Kargl, CCC Ulm 25

Differences from C++ or JavaDifferences from C++ or Java

No control constructs
No data members
No pointers
No con-/destructors
No overloaded
operations
No int data type
Contains parameter
passing modes

Unions require a tag
Different String type
Different Sequence type
Different exception
interface
No templates
oneway call semantics
readonly keyword

March 10, 2006 Frank Kargl, CCC Ulm 26

CORBA Interface Definition LanguageCORBA Interface Definition Language

Infrastructure

IDL isolates interface from implementation

Client side Server side

IDL

March 10, 2006 Frank Kargl, CCC Ulm 27

CORBA Interface Definition LanguageCORBA Interface Definition Language

Infrastructure

You can then implement the interface e.g. in C++ using the C++ language
mapping.

Client side Server side

IDL C++
Impl.

March 10, 2006 Frank Kargl, CCC Ulm 28

CORBA Interface Definition LanguageCORBA Interface Definition Language

Infrastructure

Or perhaps you better like Java.

Client side Server side

IDL Java
Impl.

March 10, 2006 Frank Kargl, CCC Ulm 29

CORBA Interface Definition LanguageCORBA Interface Definition Language

Infrastructure

Or C, Smalltalk, Cobol or a number of other languages.

Client side Server side

IDL ???
Impl.

March 10, 2006 Frank Kargl, CCC Ulm 30

CORBA Interface Definition LanguageCORBA Interface Definition Language

Infrastructure

You may also wrap legacy applications using IDL interfaces

Client side Server side

IDL IDL
Wrapper

Legacy
Appl.

March 10, 2006 Frank Kargl, CCC Ulm 31

CORBA Interface Definition LanguageCORBA Interface Definition Language

Infrastructure

Or 3rd party libraries.

Client side Server side

IDL Library
Objects

March 10, 2006 Frank Kargl, CCC Ulm 32

IDL

CORBA Interface Definition LanguageCORBA Interface Definition Language

Infrastructure

The same IDL defines the client’s interface.

Client side Server side

IDL Object
Impl.

March 10, 2006 Frank Kargl, CCC Ulm 33

Java
Client IDL

CORBA Interface Definition LanguageCORBA Interface Definition Language

Infrastructure

Then you can implement the client e.g. using Java ...

Client side Server side

IDL Object
Impl.

March 10, 2006 Frank Kargl, CCC Ulm 34

Java
ClientJava
ClientJava
Client IDL

CORBA Interface Definition LanguageCORBA Interface Definition Language

Infrastructure

or C++, Ada, Smalltalk, ...

Client side Server side

IDL Object
Impl.

March 10, 2006 Frank Kargl, CCC Ulm 35

CORBA IDL ExampleCORBA IDL Example

// GoodDay.idl
module simplegoodday {

interface GoodDay {
string hello();

};
};

Kommentar

Package

Interface
Methode

March 10, 2006 Frank Kargl, CCC Ulm 36

CORBA IDL CompilerCORBA IDL Compiler

// GoodDay.idl
module simplegoodday {

interface GoodDay {
string hello();

};
};

idl2java

// GoodDay.java
package simplegoodday;
public interface GoodDay

extends org.omg.CORBA.Object {
public java.lang.String hello();

}

// _GoodDayImplBase.java

// _st_GoodDay.java

// GoodDayHelper.java

// GoodDayHolder.java

// ...

March 10, 2006 Frank Kargl, CCC Ulm 37

CORBA IDL CompilerCORBA IDL Compiler

IDL File

IDL Compiler

Client
Stub
Body

Server
Skeleton
Header

Server
Skeleton

Body
Client
Impl.

Java Compiler

Client
Program

Server
Impl.

C++ Compiler

Server
Program

Corba
Runtime Lib.

March 10, 2006 Frank Kargl, CCC Ulm 38

CORBA IDLCORBA IDL

// complex.idl
module de {

module uni-ulm {
interface Meeting {

readonly attribute string purpose;
readonly attribute string participants;
oneway void destroy();

};
interface MeetingFactory {

Meeting CreateMeeting(in string purpose, in string part);
};
interface Room {

enum Slot { am9, am10, pm12, pm1, pm2, pm3, pm4};
const short MaxSlots = 8;
typedef Meeting Meetings[MaxSlots];
exception NoMeetingInThisSlot{};
exception SlotAlreadyTaken{};
readonly attribute string name;
Meetings View();
void Book(in Slot a_slot, in Meeting a_meeting)

raises(SlotAlreadyTaken);
void Cancel(in Slot a_slot) raises(NoMeetingInThisSlot);

};
};

};

March 10, 2006 Frank Kargl, CCC Ulm 39

Java
ClientJava
Client

There will be a number of different
Object Implementations, each with
its own IDL interface...

Object InvocationObject Invocation

Java
Client IDL Infrastructure

Client side Server side

IDL Object
Impl.

March 10, 2006 Frank Kargl, CCC Ulm 40

Each Object Implementation is
assigned a unique Object Reference...

Object InvocationObject Invocation

Java
ClientJava
ClientJava
Client IDL Infrastructure

Client side Server side

IDL Object
Impl.

ObjRef#1

March 10, 2006 Frank Kargl, CCC Ulm 41

Clients obtain an Object
Reference via several ways.

Object InvocationObject Invocation

Java
ClientJava
ClientJava
Client IDL Infrastructure

Client side Server side

IDL Object
Impl.

ObjRef#1ObjRef#1

March 10, 2006 Frank Kargl, CCC Ulm 42

Clients use the Object Reference
to inform the infrastructure...

Object InvocationObject Invocation

Java
ClientJava
ClientJava
Client IDL Infrastructure

Client side Server side

IDL Object
Impl.

ObjRef#1ObjRef#1

March 10, 2006 Frank Kargl, CCC Ulm 43

about the Target Object
Implementation for their request.

Object InvocationObject Invocation

Java
ClientJava
ClientJava
Client IDL Infrastructure

Client side Server side

IDL Object
Impl.

ObjRef#1ObjRef#1

March 10, 2006 Frank Kargl, CCC Ulm 44

Infrastructure

Roles of InfrastructureRoles of Infrastructure

Provides a Local, Well-Known
Point of Contact for All Object
Invocations a Client may make
Passes invocation to Local or Remote
Target Object Implementation
Understands IDL; Maintains Repository of available Object
Interfaces
Also Maintains Repository of Available Implementations
Federates this information across the System

A WEB OF INTERCONNECTED ORBs

March 10, 2006 Frank Kargl, CCC Ulm 45

An Object Request Broker relays the Invocation
from Client to Object Implementation, and the
result back to the Client.

IDL

C
Client
C

Client
C

Client
C

ClientClient
C

Client
C

Client
C

Client
C

Client
Obj

Impl #1
IDL

ORB
REQUEST

CORBA ArchitectureCORBA Architecture

March 10, 2006 Frank Kargl, CCC Ulm 46

Client &
Implementation

Resident

Single-Process
Library Resident

Server or Operating-
System Based

IDL

Client Obj Impl

IDL

ORB
REQUEST

IDL

Client Obj Impl

IDL

ORB
REQUEST

IDL

Client

ORB

IDL

ORB

Obj Impl

REQUEST

Different ORB TypesDifferent ORB Types

March 10, 2006 Frank Kargl, CCC Ulm 47

IDL

Client Obj Impl

IDL

ORB

IDL

Client

IDL

ORB

Obj Impl

IDL

Client

ORB

IDL

ORB

Obj Impl

ORB to ORB InteroperabilityORB to ORB Interoperability

March 10, 2006 Frank Kargl, CCC Ulm 48

CORBA 2.0 Interoperability Comprises:
An overall architecture for CORBA-CORBA
communications;
An API for adding bridges;
A general multi-transport message format (General Inter-
ORB Protocol or GIOP);
An API for gateways using ESIOPs -- (Environment-
Specific Inter-ORB Protocols)

UNIVERSAL, OUT-OF-THE-BOX INTEROPERABILITY:

GIOP over TCP/IP (IIOP) is mandatory for compliance
either internally or via a half-bridge;
DCE ESIOP is optional for all implementations.

CORBA InteroperabilityCORBA Interoperability

March 10, 2006 Frank Kargl, CCC Ulm 49

Applications

CORBA 2.0

GIOP

TCP/IP Netwar
e

ESIOP

DCEOSI

Mandatory portion: provides “out-of-the-box”
interoperability

A General Inter-ORB Protocol (GIOP) is a message format hosted on any network transport.
TCP/IP is required for CORBA 2.0, either native or via a half-bridge.

An Environment Specific Inter-ORB Protocol (ESIOP) is an optional approach for
special environments (real time systems, existing base of DCE, etc.)

CORBA 1.2
API

CORBA 2.0 Interoperability SpecCORBA 2.0 Interoperability Spec

March 10, 2006 Frank Kargl, CCC Ulm 50

ORB XYZ
Native IIOP!

ORB 123
Native DCE!

IIOP
Half-Bridge!

ORB 42

Native IIOP!
2 Protocols!

Native DCE!

CORBA 2.0
COMPLIANT

CORBA 2.0
COMPLIANT

CORBA 2.0
COMPLIANT

CORBA 2.0 ComplianceCORBA 2.0 Compliance

These products can all interoperate
with every IIOP ORB,
and they can all display the CORBA 2.0 brand.

March 10, 2006 Frank Kargl, CCC Ulm 51

Implementing CORBA ApplicationsImplementing CORBA Applications

// GoodDay.idl
module simplegoodday {

interface GoodDay {
string hello();

};
};

idl2java

// GoodDay.java
package simplegoodday;
public interface GoodDay

extends org.omg.CORBA.Object {
public java.lang.String hello();

}

// _GoodDayImplBase.java

// _st_GoodDay.java

// GoodDayHelper.java

// GoodDayHolder.java

// ...

March 10, 2006 Frank Kargl, CCC Ulm 52

Implementing CORBA ApplicationsImplementing CORBA Applications

// _GoodDayImplBase.java
package simplegoodday;
abstract public class _GoodDayImplBase extends

com.inprise.vbroker.CORBA.portable.Skeleton implements simplegoodday.GoodDay {
protected simplegoodday.GoodDay _wrapper = null;
public simplegoodday.GoodDay _this() {

return this;
}
protected _GoodDayImplBase(java.lang.String name) {

super(name);
}
public _GoodDayImplBase() {
}
// ... Stuff deleted
public static boolean _execute(vbj.simplegoodday.corba.GoodDay _self,

int _method_id, org.omg.CORBA.portable.InputStream _input,
org.omg.CORBA.portable.OutputStream _output) {
switch(_method_id) {
case 0: {

java.lang.String _result = _self.hello();
_output.write_string(_result);
return false;

}
}
throw new org.omg.CORBA.MARSHAL();

}
}

March 10, 2006 Frank Kargl, CCC Ulm 53

Implementing CORBA ApplicationsImplementing CORBA Applications

// _st_GoodDay.java
package simplegoodday;
public class _st_GoodDay extends

com.inprise.vbroker.CORBA.portable.ObjectImpl implements simplegoodday.GoodDay {
protected vbj.simplegoodday.corba.GoodDay _wrapper = null;
public vbj.simplegoodday.corba.GoodDay _this() {

return this;
}
public java.lang.String hello() {

org.omg.CORBA.portable.OutputStream _output;
org.omg.CORBA.portable.InputStream _input;
java.lang.String _result;
while(true) {

_output = this._request("hello", true);
try {

_input = this._invoke(_output, null);
_result = _input.read_string();

}
catch(org.omg.CORBA.TRANSIENT _exception) {

continue;
}
break;

}
return _result;

}

March 10, 2006 Frank Kargl, CCC Ulm 54

Implementing CORBA ApplicationsImplementing CORBA Applications

// GoodDayHelper.java
package simplegoodday;
abstract public class GoodDayHelper {

public static simplegoodday.GoodDay narrow(org.omg.CORBA.Object object) {
return narrow(object, false);

}
private static simplegoodday.GoodDay narrow(org.omg.CORBA.Object object, boolean is_a) {

// implementation deleted

}
public static vbj.simplegoodday.corba.GoodDay bind(org.omg.CORBA.ORB orb) {

return bind(orb, null, null, null);
}
public static simplegoodday.GoodDay bind(org.omg.CORBA.ORB orb, java.lang.String name) {

return bind(orb, name, null, null);
}
public static simplegoodday.GoodDay bind(org.omg.CORBA.ORB orb, java.lang.String name,

java.lang.String host, org.omg.CORBA.BindOptions options) {

// implmenetation deleted

}
}

March 10, 2006 Frank Kargl, CCC Ulm 55

Implementing CORBA ApplicationsImplementing CORBA Applications

package simplegoodday;
final public class GoodDayHolder implements org.omg.CORBA.portable.Streamable {

public simplegoodday.GoodDay value;
public GoodDayHolder() {
}
public GoodDayHolder(simplegoodday.GoodDay value) {

this.value = value;
}
public void _read(org.omg.CORBA.portable.InputStream input) {

value = simplegoodday.GoodDayHelper.read(input);
}
public void _write(org.omg.CORBA.portable.OutputStream output) {

simplegoodday.GoodDayHelper.write(output, value);
}
public org.omg.CORBA.TypeCode _type() {

return simplegoodday.GoodDayHelper.type();
}

}

March 10, 2006 Frank Kargl, CCC Ulm 56

Implementing CORBA ApplicationsImplementing CORBA Applications

What we have to do:

Write an implementation of hello() extending
_GoodDayImplBase.
Write a server instantiating this implementation.
Write a client to call the server.

March 10, 2006 Frank Kargl, CCC Ulm 57

Implementing CORBA ApplicationsImplementing CORBA Applications

// GoodDayImpl.java
package simplegoodday;
import java.util.Date;
import org.omg.CORBA.*;
import simplegoodday.*;
public class GoodDayImpl extends _GoodDayImplBase {

private String location;

public GoodDayImpl(String location) {
super();
// initialize location
this.location = location;

}

// hello method
public String hello() {

return "Hello World from " + location + "!";
}

}

March 10, 2006 Frank Kargl, CCC Ulm 58

Implementing CORBA ApplicationsImplementing CORBA Applications

// GoodDayServer.java
package simplegoodday;
import java.io.*;
import org.omg.CORBA.*;
import simplegoodday.*;
public class GoodDayServer {

public static void main(String[] args) {
try {

ORB orb=ORB.init(args, null); // init ORB
GoodDayImpl goodDayImpl=new GoodDayImpl(args[0]); // create a GoodDay Object;
orb.connect(goodDayImpl); // export the object reference
System.out.println(orb.object_to_string(goodDayImpl));

// print stringified object reference
java.lang.Object sync = new java.lang.Object(); // wait for requests
synchronized (sync) {

sync.wait();
}

} catch (Exception e) {
System.err.println(e);

}

}
}

March 10, 2006 Frank Kargl, CCC Ulm 59

Implementing CORBA ApplicationsImplementing CORBA Applications

// GoodDayClient.java
package simplegoodday;
import java.io.*;
import org.omg.CORBA.*;
import simplegoodday.*;
public class GoodDayClient {

public static void main(String args[]) {
try {

ORB orb=ORB.init(args, null); //init orb
org.omg.CORBA.Object obj=orb.string_to_object(args[0]);

// get object reference from command line
GoodDay goodDay = GoodDayHelper.narrow(obj);

// cast the IIOR to a specific interface
if (goodDay==null) { // check for errors

System.err.println("stringified object reference" +
"is of wrong type");

System.exit(-1);
}
System.out.println(goodDay.hello()); // call remote method

} catch (SystemException ex) {
System.err.println(ex);

}
}

}

March 10, 2006 Frank Kargl, CCC Ulm 60

WhatWhat’’s missing here?s missing here?

Dynamic Object Discovery
Naming Service

Dynamic Object Instantiation
Basic and Portable Object Adapter

Passing parameters
IDL: in, out, inout, oneway

Classes must extend *ImplBase
tie approach

Stubs/Skeletons must be present at Client/Server
Dynamic Invocation Interface (DII)
Dynamic Skeleton Interface (DSI)

March 10, 2006 Frank Kargl, CCC Ulm 61

CORBA ORB ArchitectureCORBA ORB Architecture

ORB CoreGIOP/IIOP

OS Kernel
OS I/O Subsyst.

Network Interface

OS Kernel
OS I/O Subsyst.

Network Interface

DII IDL
Stubs

ORB
Interface

Object
Adapter

IDL
Skel. DSI

Client Object
(Servant)operation()

in args

out args + return value

Naming Service Interface Rep. IDL Compiler Implementation Rep.

March 10, 2006 Frank Kargl, CCC Ulm 62

CORBA ServicesCORBA Services

Basic Services, needed by every OO
application
Standard Interfaces provide portability and
interoperability for these basic functions
Not all services implemented by all vendors
Interoperability should be provided

March 10, 2006 Frank Kargl, CCC Ulm 63

COSCOS

Naming
Events / Notification
Life Cycle
Persistent Object
Relationship
Externalization
Transactions
Concurrency Control

Licensing
Query
Properties
Security (incl. IIOP
over SSL)
Time
Collections
Trading

March 10, 2006 Frank Kargl, CCC Ulm 64

COSCOS

Lifecycle: creation and deletion of objects.
Naming: mapping of convenient object names to references to
actual objects.
Event Notification: registration of required and expected
notification of event passage.
Persistence: long-term existence of objects, management of
object storage.
Relationships: representation and consistency management of
relationships between objects.
Externalization: ability to store object representation on
removable media and allow re-internalization later.

March 10, 2006 Frank Kargl, CCC Ulm 65

COSCOS

Transactions: merger of OLTP and distributed objects.
Concurrency Control: management of concurrent execution in
distributed environment.
Security: framework for many underlying security
technologies.
Properties: assign properties to objects.
Query: common query interface to objects.
Licensing: license management.
Trading: trading of different object references by attributes

March 10, 2006 Frank Kargl, CCC Ulm 66

EvaluationEvaluation

Learning curve
Interoperability
Portability
Feature Limitations
Performance

March 10, 2006 Frank Kargl, CCC Ulm 67

Learning CurveLearning Curve

CORBA introduces the following:
New concepts (e.g. IOR, stubs, object adapters)
New components and tools (e.g. IDL compiler,
ORB, implementation rep.)
New features (e.g. exception handling,
inheritance)

Time spent learning this must be amortized
over many projects

March 10, 2006 Frank Kargl, CCC Ulm 68

InteroperabilityInteroperability

CORBA 1 was woefully incomplete with respect to
interoperability
CORBA 2.x defines a useful interoperability
specification

later extensions deal with portability issues for server-side
(i.e. the POA spec)

Most ORB implementations now support IIOP or
GIOP robustly

but not all higher services are interoperable

March 10, 2006 Frank Kargl, CCC Ulm 69

PortabilityPortability

To improve portability, the latest CORBA
specification standardizes

IDL language mappings (e.g. C, C++, Java)
Naming service, event service, lifecycle service
ORB initialization service
Portable Object Adapter API
Servant mapping

Porting applications from ORB-to-ORB will be
limited, however, until conformance tests become
common-place

http://www.opengroup.org/testing/testsuites/vsorb.htm

March 10, 2006 Frank Kargl, CCC Ulm 70

Feature LimitationsFeature Limitations

Standard CORBA doesn’t yet address key
“inherent” complexities of distributed
computing, e.g.

latency
fault tolerance (RPF is underway on this)
causal ordering
deadlock

March 10, 2006 Frank Kargl, CCC Ulm 71

Feature LimitationsFeature Limitations

Most ORBs do not support passing objects by value
Solution with CORBA 2.3/3.0

Most ORBs still support only the following
semantics:

ORs are passed by reference
structs and unions are passed by value
objects by value must be hand-crafted using “factories”

March 10, 2006 Frank Kargl, CCC Ulm 72

Feature LimitationsFeature Limitations

Most ORBs do not yet support asynchronous
method invocation or timeouts
Versioning is supported in IDL via pragmas

not language inherent like in ONC RPC or DCOM

March 10, 2006 Frank Kargl, CCC Ulm 73

Performance LimitationsPerformance Limitations

Performance may not be as good as hand-
crafted code for some applications due to

additional remote invocations for naming
marshaling/demarshaling overhead
data copying and memory management
endpoint and request demultiplexing
context switching and synchronization overhead
Trade off between performance and extensibility,
robustness, maintainablility

March 10, 2006 Frank Kargl, CCC Ulm 74
Develop Clients and Servers Independently

using the Best Tools for Each Task
Develop Clients and Servers Independently

using the Best Tools for Each Task

Object Services and Common Facilities
accessed via standard OMG IDL Interfaces
Object Services and Common Facilities

accessed via standard OMG IDL Interfaces

For Your DevelopersFor Your Developers

Much more than Client-Server
CORBA provides a sophisticated base
CORBA Services provide necessary OO foundation
CORBA Facilities will standardize building blocks
Developers create or assemble Application Objects

March 10, 2006 Frank Kargl, CCC Ulm 75

For Your UsersFor Your Users

Purchase Server Objects from Multiple Vendors and Integrate
Under One or More Client Applications
Seamlessly Integrate In-House and Purchased Objects
Acquire & Maintain a Single Set of Business Objects
Accessed by the Entire Enterprise
Each Division Accesses These Common Objects Using a GUI
Built
for its Own Needs

APPLICATION: A Set of Clients and Servers Activated
and Connected at Run Time to Attack the Problem at Hand

APPLICATION: A Set of Clients and Servers Activated
and Connected at Run Time to Attack the Problem at Hand

March 10, 2006 Frank Kargl, CCC Ulm 76

CORBA ImplementationsCORBA Implementations

Many ORBs available
Orbix from IONA
Visibroker from Inprise
BEA Web Logic Enterprise
Component Broker from IBM
CORBAplus from Expertsoft
ORB Express
Open Source ORBs (TAO, ORBacus, omniORB, MICO, ...)

In theory CORBA facilitates vendor-and platform
independent application collaboration
In practice interoperability and portability still an
issue

March 10, 2006 Frank Kargl, CCC Ulm 77

CORBA 3CORBA 3

Improved Java and Internet Integration
Java-to-IDL reverse mapping
Firewall specification
CORBA Object URLs

Quality of Service Control
Asynchronous Invocation/Messaging
Invocation QoS Control
Realtime, Minimum, Fault Tolerance

CORBA Component Model
Objects passed by value
Component Container

Transactional, Persistent, Secure
Distribution Format
Scripting Language Specification

March 10, 2006 Frank Kargl, CCC Ulm 78

Summary of CORBA FeaturesSummary of CORBA Features

Object Request Broker (ORB)
Interface Definition Language (IDL)
Language Mappings (C, C++, COBOL, Java)
Static and Dynamic Invocation Interfaces
Static and Dynamic Skeleton Interfaces
Interface and Implementation Repositories
Basic and Portable Object Adapter
CORBA Services

March 10, 2006 Frank Kargl, CCC Ulm 79

More InformationMore Information

www.omg.orgwww.omg.org

	Distributed Applications�with CORBA
	Future Networks
	The Problem
	Existing Tools?
	Object Management Group
	Technical Committee
	Electronic Meetings
	Adoption Process
	Domain Task Forces
	Other Directions
	An Open Process
	A Common Foundation
	Object Model
	OMA Overview
	Fundamental CORBA Design Principles
	Fundamental CORBA Design Principles
	CORBA Advantages
	CORBA Architecture
	CORBA Architecture
	CORBA Architecture
	CORBA Architecture
	Interface Definition Language
	CORBA IDL
	CORBA IDL Elements
	Differences from C++ or Java
	CORBA Interface Definition Language
	CORBA Interface Definition Language
	CORBA Interface Definition Language
	CORBA Interface Definition Language
	CORBA Interface Definition Language
	CORBA Interface Definition Language
	CORBA Interface Definition Language
	CORBA Interface Definition Language
	CORBA Interface Definition Language
	CORBA IDL Example
	CORBA IDL Compiler
	CORBA IDL Compiler
	CORBA IDL
	Object Invocation
	Object Invocation
	Object Invocation
	Object Invocation
	Object Invocation
	Roles of Infrastructure
	CORBA Architecture
	Different ORB Types
	ORB to ORB Interoperability
	CORBA Interoperability
	CORBA 2.0 Interoperability Spec
	CORBA 2.0 Compliance
	Implementing CORBA Applications
	Implementing CORBA Applications
	Implementing CORBA Applications
	Implementing CORBA Applications
	Implementing CORBA Applications
	Implementing CORBA Applications
	Implementing CORBA Applications
	Implementing CORBA Applications
	Implementing CORBA Applications
	What’s missing here?
	CORBA ORB Architecture
	CORBA Services
	COS
	COS
	COS
	Evaluation
	Learning Curve
	Interoperability
	Portability
	Feature Limitations
	Feature Limitations
	Feature Limitations
	Performance Limitations
	For Your Developers
	For Your Users
	CORBA Implementations
	CORBA 3
	Summary of CORBA Features
	More Information

